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SUMMARY

An improved Navier±Stokes solver is presented to compute two-dimensional incompressible ¯ows in the
stream±vorticity formulation at high Reynolds number. The technique is based on both the IMM for the non-
orthogonal co-ordinate system and a specialized TVD scheme to cope with non-linear transport terms. Numerical
results are shown to demonstrate the accuracy and ef®ciency of the technique. The method is robust and holds
promise to handle complex geometries economically. # 1997 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The interpolation matrix method (IMM) is a ®nite difference technique to discretize the

multidimensional Navier±Stokes equations in a generalized co-ordinate system. The advantage of

the IMM, as pointed out by Koshizuka et al.,1 in comparison with the ®nite element method is the

simplicity in formulating and coding, since the number of points involved is always kept constant

(®ve points for a 2D ¯ow problem) in every pressure-linked equation. This allows the use of classical

techniques such as SOR to solve the algebraic equation system.

In Koshizuka's IMM (initial version) the crossing terms are not taken into account. This is only

correct when the co-ordinate system is orthogonal, but is false in the contrary case.

Nguyen and En-Nefkhaoui2 have shown that the absence of crossing terms can produce signi®cant

relative error on the vorticity in an inclined cavity ¯ow. They proposed an improved approximate

second-order parabolic function. Unfortunately, this remedy is not enough when one simulates

complicated ¯uid ¯ow problems at high Reynolds numbers. An ef®cient numerical scheme for

handling the convective terms is needed. A major dif®culty appears when one attempts to improve

the method within the special structure of the IMM. In fact, a meticulous observation shows that only

methods having certain similarities to Taylor's development are worthwhile candidates.3±6

This problem can be resolved by using a higher-order method such as the total-variation-

diminishing (TVD) scheme.7,21,22,25±27 This is achieved by ®rst adapting the Lax±Wendroff (LW)
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scheme to the IMM and then updating it to be like the TVD form by appending suitable curvilinear

terms. This approach is similar to that used by Davis,8 inspired by Sweby's interpretation of the LW

scheme.9 This provides a robust treatment for convective terms at high Reynolds numbers by

damping the spurious wiggles and remains stable for discontinuous ¯ow parameters even in the zero-

viscosity limit.

The aim of this paper is to present a numerical technique that is based on the IMM coupled with a

TVD scheme to calculate Navier±Stokes ¯ows at high Reynolds number in arbitrary geometries.

Section 2 and 3 describe the numerical background of the IMM. The adaptation of Davis' TVD

scheme to the IMM is presented in Section 4. We present several benchmarks to validate the

proposed technique and discuss the obtained results in Section 5.

2. GOVERNING EQUATIONS

The stream±vorticity formulation of the Navier±Stokes equations consists of the vorticity transport

equation and the Poisson equation for the stream ®eld. Thus for a two-dimensional unsteady

incompressible viscous ¯ow the dimensionless governing equations can be expressed in a two-

dimensional Cartesian co-ordinate system as
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where c is the streamfunction, o is the vorticity, �u; v� is the vector velocity and Re is the Reynolds

number.

3. IMM METHOD

3.1. General framework

In the IMM discretization one assumes a polynomial expression of any physical quantity f by

some nodal values in the neighbourhood of a mesh point P:

f�x� � Pn
k�0

C
p
k Pk�x�: �4�

The differential coef®cients of the physical quantity at mesh point P are obtained by differentiating

equation (4):
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Equation (5) can be written in matrix form as

D�P� � MD�P�F�P�; �6�
where D�P� is a vector of the n� 1 differential coef®cients. Here the vector F�P� consists of the n� 1

nodal values of the physical quantity, while the matrix MD�P� depends only on F�P� and the functions

of the polynomial as shown on the right-hand side of equations (4) and (5).

1058 M. LOUAKED, L. HANICH AND K. D. NGUYEN

INT. J. NUMER. METH. FLUIDS, VOL. 25: 1057±1082 (1997) # 1997 John Wiley & Sons, Ltd.



The IMM provides a way of making a convenient transformation between a local, computational

space (natural co-ordinates) and global, physical space. Figure 1 shows the geometry in both physical

and natural co-ordinate space.

Now we de®ne the approximate polynomial equation (4) in the transformed plane. The

interpolating matrix MD�P� in terms of the x-co-ordinate system reads

Dx�P� � MDx
F�P�: �7�

The interpolating matrix MDx
is assumed to be homogeneous for every mesh point P. With the help of

the transformation matrix Tx!x de®ned as

D�P� � Tx!xDx�P�; �8�

the following expression for the interpolating matrix MD�P� in terms of the x-co-ordinate system is

obtained:

MD�P� � Tx!xMDx
: �9�

Here the matrix Tx!x involves terms such xx; xZ; xxx; . . .. Note that the basis functions used in the trial

function expansion are also used to de®ne the co-ordinate mapping; the co-ordinate mapping is

referred to as an `isoparametric co-ordinate transformation'.

3.2. Typical interpolation

Biquadratic shape functions are used. Thus for a quantity f one can write

f � c0 � c1x� c2Z� c3x
2 � c4Z

2 � c5xZ� c6x
2Z� c7xZ

2 � c8x
2Z2: �10�

Note that at point P the higher-order mixed derivatives of f are equal to zero, except for the lowest-

order one fxZ�c5
. The x- and Z-derivatives of f are given as
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Figure 1. Co-ordinate transformations between physical space and natural space
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Here fi �i � 1; . . . ; 8� represents the f-variable values at point Pi. The derivatives in the �x; y�- and

�x; Z�-coordinate systems are related as
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The combination of equations (11) and (12) gives
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is called the interpolating matrix and fm � �f5 ÿ f6 � f8 ÿ f7�=4. Terms I in equation (13)

represents a central approximation of the ®rst- and second-order derivatives and term II is a

correction to the second-order derivatives when the co-ordinate transformation is non-orthogonal.

4. NUMERICAL SCHEME

4.1. Review of Sweby's scheme and Davis' approach

In order to introduce Sweby's scheme9 in a simple setting, we consider the scalar wave equation

@o
@t
� a

@o
@x
� 0: �15�

Let on
j be the numerical solution of (15) at x � jDx; t � nDt, with Dx the mesh spacing and Dt the

time step. If we assume a > 0, then the Lax±Wendroff method is written as the upwind part with an

additional antidiffusive ¯ux:

on�1
j � on

j ÿ nDon
jÿ1=2 ÿ H�1

2
�1ÿ n�nDon

j�1=2�; �16�
where n � aDt=Dx;Don

jÿ1=2 � on
j ÿ on

jÿ1 and Don
j�1=2 � on

j�1 ÿ on
j .
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Since the ®rst-order scheme does not produce spurious oscillations at discontinuities, a limited

amount of antidiffusive ¯ux is added:

ÿH�f 1
2
�1ÿ n�nDon

j�1=2�: �17�
A particular form of the resulting scheme is given by the incremental form

on�1
j � on
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2
�1ÿ n��f�r�j �=r�j ÿ f�r�jÿ1��gDon

j�1=2 �18�
where r�j � Don

jÿ1=2=Do
n
j�1=2:

Algebraic conditions on the limiter function which guarantee the TVD property are

04 �f�r�=r;f�r��4 2; �19�
provided that the CFL condition n4 1 is realized. Davis8 showed that it is possible to recover

Sweby's scheme by adding suitable terms to the Lax±Wendroff method:
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jÿ1=2: �20�
The resulting scheme can be written as
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Sweby's scheme is obtained by choosing

K��r�j � �
n
2
�1ÿ n��1ÿ f�r�j ��: �22�

4.2. Formulation of proposed extension to IMM

In the IMM the differential coef®cients in Cartesian space are estimated at each mesh point and the

differential equation is directly transformed to a difference equation. The one-step LW scheme for the

two-dimensional vorticity convection equation is obtained from equation (1),
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and written in IMM difference operator notation as

�on
ij � on

ij ÿ Dtdx�uo�n ÿ Dtdy�vo�n �
Dt2

2
u�dxx�uo�n � dxy�vo�n� �

Dt2

2
v�dyy�vo�n � dyx�uo�n�;

�24�
where the IMM difference operators are de®ned by

dxf � coeff �1; 1; ij��f�neigh�1; ij�� ÿ f�ij�� � coeff �2; 1; ij��neigh�2; ij�� ÿ f�ij��
� coeff �3; 1; ij��f�neigh�3; ij�� ÿ f�ij�� � coeff �4; 1; ij��f�neigh�4; ij�� ÿ f�ij��; �25�

dxxf � coeff �1; 3; ij��f�neigh�1; ij�� ÿ f�ij�� � coeff �2; 3; ij��f�neigh�2; ij�� ÿ f�ij��
� coeff �3; 3; ij�f�neigh�3; ij�� ÿ f�ij�� � coeff �4; 3; ij��f�neigh�4; ij�� ÿ f�ij�; �26�

dxyf � coeff �1; 5; ij��f�neigh�1; ij�� ÿ f�ij�� � coeff �2; 5; ij��f�neigh�2; ij�� ÿ f�ij��
� coeff �3; 5; ij��f�neigh�3; ij�� ÿ f�ij�� � coeff �4; 5; ij��f�neigh�4; ij�� ÿ f�ij�: �27�
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Here coeff �:; :; ij� represents the differential coef®cient in the interpolating matrix at mesh point ij.

Similar equations for dy and dyy can be determined from (25) and (26) by replacing the second

column of coeff �:; :; ij� the numbers 1 and 3 by 2 and 4 respectively. The term neigh�n; ij� is the

reference of the point Pn neighbour of mesh point ij.

As the proposed scheme produces spurious wiggles in solutions with steep gradients, the scheme

(24) can be updated to TVD form by appending to the right-hand side of equation (24) suitable

curvilinear terms (see Appendix A)
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where
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One might measure the smoothness of the data by looking at the ratio of consecutive gradients,
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Here f�r� is the ¯ux limiter function de®ned by

f�r� � max�0;min�1; 2r�;min�r; 2��; �35�
which is called Roe's `superbee' limiter.

In the ®nal stage the vorticity values will be corrected by appending the diffusion term. Thus the

vorticity value at time step n� 1 is given by
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where un � dyc
n and vn � ÿdxc

n. This explicit time discretization is expected to be non-linearly

stable under the conditions10

0�5�u2 � v2�DtRe4 1;
2Dt

Re

1

Dx2
� 1

Dy2

� �
4 1: �37�

5. NUMERICAL TESTS

The benchmark tests presented below are chosen so that the use of non-orthogonal and non-uniform

grids will be inevitable to ensure the approximate benchmark solution. As the grid non-orthogonality

strongly affects the numerical errors and the convergence of the computed results, the ®rst two tests

involve a lid-driven, inclined cavity ¯ow. The computational grid used must be parallel to the

sidewalls and then necessarily non-orthogonal. The last test deals with the ¯ow past a circular

cylinder. A lot of successive ¯ow patterns behind the cylinder at different Reynolds number values

have been observed by numerical and experimental methods.11±13

The proposed model must be able to simulate the time evolution of these ¯ow patterns fairly well.

In order to achieve this, an appropriate numerical scheme will be needed to prevent spurious

oscillation and numerical diffusion due to strongly convective ¯ows. Additionally, the use of non-

uniform grids with variable spacing ratio will be indispensable. Therefore this test permits the

evaluation of the accuracy and reliability of the model as a whole. In the next two subsections we will

describe the benchmark, present the numerical results and give some discussion.

5.1. Driven cavity ¯ow

We consider the steady ¯ow inside an inclined cavity whose upper lid is moving at constant

velocity UL. This classical problem has become a standard benchmark for assessing the performance

of algorithms to solve the incompressible Navier±Stokes equations. The benchmark reference

solutions14,15 provide a tool to check the accuracy and robustness when evaluating a new method in

handling complex ¯ows on a non-orthogonal grid.

The domain of calculation in a parallelogram with angle b � 45� for test 1 and b � 30� for test 2.

In both cases the lid velocity UL � 1, the cavity length L � 1 and the density r � 1. The geometry

and corresponding boundary conditions are shown in Figure 2. For tests 1 and 2 the Reynolds number

Re � ULL=n � 1000.

These tests were ®rst proposed by Demirdzic et al.14 as the benchmark reference (BR) for non-

orthogonal grid but at two different Reynolds number values Re� 100 and 1000. The authors have

used a ®nite volume technique coupled with a SIMPLE method to solve the �u; v; p� primitive

variable governing equations. The BR solution has been obtained for both tests using several

calculational grids (20620, 40640, 80680, 1606160, 3206320 control volumes (CVs)) in a

multigrid procedure. Demirdzic has shown that for both Reynolds numbers the difference between

the velocity pro®les obtained on the two ®nest grids is hardly visible. It is also very small on the

80680 and 3206320 CVs. Consequently, the use of ®ne grids seems not to be necessary.

We have resolved the problem using a �c;o� formulation and a 1206120 grid. The boundary

conditions are those of no slip on the ®xed walls, i.e. u � 0 and v � 0; on the sliding wall, u � 1 and

v � 0. Zero values are prescribed for c on the boundary; the vorticity o on the boundary is obtained

using the Poisson equation.

Figures 3 and 4 present the u- and v-velocity component pro®les along the centrelines CL1 and

CL2 respectively obtained from IMM calculations for b � 45� at Re� 1000, in comparison with

Demirdzic's 3206320 CV results. The difference between them is not visible. The streamline
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contour map for this test is shown in Figure 5. Clearly, we have obtained the same ¯ow pattern as that

of Demirdzic. There exist two velocities. According to the growth of Re, the primary vortex, driven

by the lid motion, becomes smaller and smaller while the secondary vortex size increases; at

Re� 1000 the primary vortex ®lls only about the upper third of the cavity, while the secondary vortex

becomes larger but weaker. Table I presents the streamfunction values at the centres of the ®rst and

second vortices cmin and cmax respectively, as well as the x- and y-co-ordinates of their positions

obtained from Demirdzic and from IMM calculations. Obviously, our results are qualitatively in very

good agreement with Demirdzic's results. Figure 6 presents the vorticity contour map. Unfortunately,

as Demirdzic did not calculate the vorticity, no comparison is possible.

In the second test for b � 30�, i.e. for extreme grid non-orthogonality, the results are still similar to

those obtained from Demirdzic's calculation. Figures 7 and 8 present the velocity pro®les for this test.

The difference between the results obtained from the IMM calculation and from Demirdzic is always

hardly visible. Because of the smaller volume of the cavity, the primary vortex is two times weaker

Figure 2. Geometry and boundary conditions for skewed driven cavity problem

Figure 3. Velocity pro®les along CL1 for b� 45� and Re� 1000
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than that of the ®rst test (Figures 9 and 10) by Demirdzic. The IMM results agree fairly well with

Demirdzic's. This effectively proves the accuracy and reliability of the proposed model.

In an attempt to give a likely BR solution, we have calculated the ¯ow in the same cavity as in the

second test �b � 30�� but at Re� 3000. Figures 11 and 12 present the streamfunction and vorticity

contour map for this test. According to this Reynolds number, the primary vortex size is reduced. It

®lls only about the upper quarter of the cavity. The comparison between the primary vortex in this

case with the one obtained in the second test shows that the ratio is about 1�37. Table II presents the

minimum and maximum streamfunction values at the vortex centres and their positions for b � 30� at

Re� 3000.

5.2. Flow around a circular cylinder

The ¯ow past a circular cylinder is an unsteady problem in nature and good numerical accuracy is

required in order to capture the different phenomena present in the non-stationary solution.

In the time development, immediately after the start of the motion the ¯ow is irrotational

everywhere. As a function of the Reynolds number, Bouard and Coutanceau11 pointed out the

existence of four kinds of structures in the recirculating zone. At moderate Reynolds numbers the

appearance of a bulge in the streamline pattern and the presence of a secondary eddy �Re5 550� with

Figure 4. Velocity pro®les along CL2 for b� 45� and Re� 1000

Figure 5. Predicted streamlines for b� 45� and Re� 1000
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a rotation opposite to that of the main eddy are found. Then, for Reynolds numbers ranging from

3000 to 9500, a second pair of secondary eddies appears (a and b phenomena).

The aim of this test is to demonstrate the capacity of the IMM to highlight the ¯ow structures at

early times of an impulsively started circular cylinder (of diameter D� 2R) at Reynolds numbers of

300, 550, 3000 and 9500, for which experimental11 and numerical12,13,16±20,23,24 data exist.

Figure 6. Predicted vorticity lines for b� 45� and Re� 1000

Table I. Minimum and maximum streamfunction values at vortex centres and their positions
(Re� 1000)

b � 45� b � 30�

Demirdzic IMM Demirdzic IMM

cmin ÿ5�3507610ÿ 2 ÿ5�469610ÿ2 ÿ3�8563610ÿ2 ÿ3�9000610ÿ2

x 1�3130 1�3100 1�4583 1�4540
y 0�5740 0�5700 0�4108 0�4080
cmax 1�0039610ÿ2 1�0170610ÿ 2 4�1494610ÿ3 4�312610ÿ3

x 0�7766 0�7760 0�9038 0�8980
y 0�3985 0�3980 0�2550 0�2560

Figure 7. Velocity pro®les along CL1 for b� 30� and Re� 1000
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Figure 8. Velocity pro®les along CL2 for b� 30� and Re� 1000

Figure 9. Predicted streamlines for b� 30� and Re� 1000

Figure 10. Predicted vorticity lines for b� 30� and Re� 1000
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For time t 5 0 a uniform velocity U1 is applied to the ¯uid at in®nity. The dimensionless unsteady

Navier±Stokes equations, according to time T � U1t=R and Reynolds number Re � U1D=n, are

solved in the domain exterior to the cylinder, with no slip on the cylinder surface and uniform ¯ow

conditions at in®nity. The domain is discretized into an 816161 grid with grid points clustered near

the cylinder. All the calculations are performed on this grid and any symmetry conditions on the ¯ow

are assumed. The time step Dt � 0�01 for Re� 300 and 500 and Dt � 0�001 for Re� 3000 and 9500.

The results are shown in Figures 13±37.

Figures 13, 14, 17, 18, 21, 23, 27 and 28 present the evolution of the streamline patterns for ¯ow at

Reynolds numbers between Re� 300 and 9500. The evolution from a pair of eddies to the a and b
phenomena is clearly seen.

Figures 31±33 show the axial velocity in the region immediately behind the cylinder. A strong

recirculating ¯ow can be observed as the primary eddies induce velocities. Compared with the

experimental results11 for Re� 550 and the numerical results12 for Re� 300 and 550, the simulation

overpredicts the strength of the recirculating ¯ow. However, in Ta Phuoc Loc's results,12 computed

using a fourth-order compact ®nite difference scheme, an underprediction compared with the

experimental solution was observed.

Figure 11. Predicted streamlines for b� 30� and Re� 3000

Figure 12. Predicted vorticity lines for b� 30� and Re� 3000
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For Re� 3000, Figures 21±24 compare the Couard and Coutanceau ¯ow visualizations11 with the

computed streamlines for T� 2 and 5. The agreement is good. Not only are the size and location of

the secondary vortex accurately predicted, but the details of the ¯ow around it are also correctly

described.

The time evolution of the geometrical parameter of the wake is shown in Figures 34 and 35 for

Re� 3000 and 9500 and compared with experimental measurements.11 The simulation accurately

predicts the length of the closed wake.

Figure 13. Streamline pattern for Re� 300 at T� 3

Table II. Minimum and maximum streamfunction values at
vortex centres and their positions (Re� 3000, b� 30�)

cmin 7 2�83861072 cmax 1�033061072

x 1�5890 x 0�8880
y 0�4370 y 0�2610

Figure 14. Streamline pattern for Re� 300 at T� 6
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Figure 15. Vorticity lines for Re� 300 at T� 3

Figure 16. Vorticity lines for Re� 300 at T� 6

Figure 17. Streamline pattern for Re� 550 at T� 3
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Figure 18. Streamline pattern for Re� 550 at T� 6

Figure 19. Vorticity lines for Re� 550 at T� 3

Figure 20. Vorticity lines for Re� 550 at T� 6
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Figure 21. Streamline pattern for Re� 3000 at T� 2

Figure 22. Experimental visualization of Bouard and Coutanceau11 for Re� 3000 at T� 2

Figure 23. Streamline pattern for Re� 3000 at T� 5
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Figure 24. Experimental visualization of Bouard and Coutanceau11 for Re� 3000 at T� 5

Figure 25. Vorticity lines for Re� 3000 at T� 3

Figure 26. Vorticity lines for Re� 3000 at T� 5
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Figure 27. Streamline pattern for Re� 9500 at T� 2

Figure 28. Streamline pattern for Re� 9500 at T� 4

Figure 29. Vorticity lines for Re� 9500 at T� 2
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Figure 30. Vorticity lines for Re� 9500 at T� 4

Figure 31. Comparison between IMM and Ta Phuoc Loc12 numerical results for axial velocity for Re� 300

Figure 32. Comparison between experimental and numerical results for axial velocity for Re� 550
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6. CONCLUDING REMARKS

A numerical method was presented to calculate two-dimensional, time-dependent incompressible

¯ows on non-orthogonal grids for high Reynolds numbers. Davis' high-resolution second-order-

accurate scheme was extended to the IMM for resolving the non-linear vorticity equation. Constraints

on the limiters, as functions of gradient ratios, have been used so that the resulting scheme is TVD.

Roe's limiter and others such as minmod and Chakravarty±Osher limiters have been investigated.

The Poisson equation was solved iteratively by an SOR method and the velocity ®eld satis®ed the

continuity equation up to machine accuracy. The method is robust and easy to code. The test cases

presented here were considered as standard problems to validate numerical methods in terms of both

accuracy and ef®ciency. The examples shown are in good agreement with either numerical or

Figure 33. Comparison between IMM and Ta Phuoc Loc12 numerical results for axial velocity for Re� 550

Figure 34. Comparison between experimental and numerical results for unsteady main wake length for Re� 3000
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experimental visualization results and can be considered as an illustration of the ability of the scheme

to describe the details of complex steady or unsteady ¯ows.

APPENDIX: EXTENSION OF DAVIS' APPROACH TO IMM

We consider the terms

ÿDt �ufx � vfy�|������{z������}
�a�

� �Dtu�2
2

fxx �
�Dtv�2

2
fyy|����������������{z����������������}

�b�

�38�

Figure 35. Comparison between experimental and numerical results for unsteady main-wake length for Re� 9500

Figure 36. Evolution with time of vorticity repartition on surface of cylinder for Re� 300
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in the Lax±Wendroff scheme for a physical quantity f � f �x; y; t�. In the IMM the derivatives are

written as

fx �
@f

@x
� coeff �1; 1; ij�� f1 ÿ fij� � coeff �2; 1; ij�� f2 ÿ fij�
� coeff �3; 1; ij�� f3 ÿ fij� � coeff �4; 1; ij�� f4 ÿ fij�;

fy �
@f

@y
� coeff �1; 2; ij�� f1 ÿ fij� � coeff �2; 3; ij�� f2 ÿ fij�
� coeff �3; 1; ij�� f3 ÿ fij� � coeff �4; 2; ij�� f4 ÿ fij�;

fxx �
@2f

@x2
� coeff �1; 3; ij�� f1 ÿ fij� � coeff �2; 3; ij�� f2 ÿ fij�
� coeff �3; 3; ij�� f3 ÿ fij� � coeff �4; 3; ij�� f4 ÿ fij�;

fyy �
@2f

@y2
� coeff �1; 4; ij�� f1 ÿ fij� � coeff �2; 4; ij�� f2 ÿ fij�
� coeff �3; 4; ij�� f3 ÿ fij� � coeff �4; 4; ij�� f4 ÿ fij�:

�39�

To simplify the notation, we put

coeff �1; 1; ij� � C1x; coeff �2; 1; ij� � C2x; coeff �3; 1; ij� � C3x; coeff �4; 1; ij� � C4x;

coeff �1; 2; ij� � C1y; coeff �2; 2; ij� � C2y; coeff �3; 2; ij� � C3y; coeff �4; 2; ij� � C4y;

coeff �1; 3; ij� � C1xx; coeff �2; 3; ij� � C2xx; coeff �3; 3; ij� � C3xx; coeff �4; 3; ij� � C4xx;

coeff �1; 4; ij� � C1yy; coeff �2; 4; ij� � C2yy; coeff �3; 4; ij� � C3yy; coeff �4; 4; ij� � C4yy;

Figure 37. Evolution with time of vorticity repartition on surface of cylinder for Re� 9500
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Dfi�1=2 � f3 ÿ fij, Dfiÿ1=2 � fij ÿ f2, Dfj�1=2 � f4 ÿ fij and Dfjÿ1=2 � fij ÿ f1. Then the terms (a) in

equations (38) takes the form

ufx � vfy � �uC1x � vC1y�� f1 ÿ fij� � �uC2x � vC2y�� f2 ÿ fij�
� �uC3x � vC3y� f3 ÿ fij� � �uC4x � vC4y�� f4 ÿ fij�

�ÿ�uC2x � vC2y�Dfiÿ1=2 � �uC3x � vC3y�Dfi�1=2|�����������������������������������������{z�����������������������������������������}
term in x: �c�

ÿ�uC1x � vC1y�Dfjÿ1=2 � �uC4x � vC4y�Dfj�1=2|�����������������������������������������{z�����������������������������������������}
term in y: �d�

: �40�

The coef®cients are de®ned by

C1x � ÿZx=2; C2x � ÿxx=2; C3x � xx=2; C4x � Zx=2;

C1y � ÿZy=2; C2y � ÿxy=2; C3y � xy=2; C4y � Zy=2:

Therefore

ÿ �uC2x � vC2y� � 1
2
�uxx � vxy� � 1

2
u0; ÿ�uC1x � vC1y � 1

2
�uZx � vZy� � 1

2
v0;

�uC3x � vC3y� � 1
2
�uxx � vxy� � 1

2
u0; �uC4x � vC4y� � 1

2
�uZx � vZy� � 1

2
v0;

u0 � uxx � vxy; v0 � uZx � vZy; u0 � 2�uC3x � vC3y�; v0 � 2�uC4x � vC4y�:
To extend the TVD concept to the Lax±Wendroff (L±W) centred scheme, the advective term is

decantered in the following way. If u0 > 0, the term (c) according to x is written as

ÿ �uC2x � vC2y�Dfiÿ1=2 � �uC3x � vC3y�Dfi�1=2 � �uC2x � vC2y�Dfiÿ1=2 ÿ �uC2x � vC2y�Dfiÿ1=2

� ÿ2�uC2x � vC2y�Dfiÿ1=2 � �uC3x � vC3y�Dfi�1=2 � �uC2x � vC2y�Dfiÿ1=2:

If u0 < 0, the term according to x is written as

ÿ �uC2x � vC2y�Dfiÿ1=2 � �uC3x � vC3y�Dfi�1=2 � �uC3x � vC3y�Dfi�1=2 ÿ �uC3x � vC3y�Dfi�1=2

� ÿ�uC2x � vC2y�Dfiÿ1=2 � 2�uC3x � vC3y�Dfi�1=2 ÿ �uC3x � vC3y�Dfi�1=2:

If v0 > 0, the term (d) according to y is written as

ÿ �uC1x � vC1y�Dfjÿ1=2 � �uC4x � vC4y�Dfj�1=2 � �uC1x � vC1y�Dfiÿ1=2 ÿ �uC1x � vC1y�Dfjÿ1=2

� ÿ2�uC1x � vC1y�Dfjÿ1=2 � �uC4x � vC4y�Dfj�1=2 � �uC1x � vC1y�Dfjÿ1=2:

If v0 < 0 the term according to y is written as

ÿ �uC1x � vC1y�Dfjÿ1=2 � �uC4x � vC4y�Dfj�1=2 � �uC4x � vC4y�Dfj�1=2 ÿ �uC4x � vC4y�Dfj�1=2

� ÿ�uC1x � vC1y�Dfjÿ1=2 � 2�uC4x � vC4y�Dfj�1=2 ÿ �uC4x � vC4y�Dfj�1=2:

The term (b) of second order in equation (38) is written as

ÿDt2

2
�u2C1xx � v2C1yy�Dfjÿ1=2 ÿ

Dt2

2
�u2C2xx � v2C2yy�Dfiÿ1=2

� Dt2

2
�u2C3xx � v2C3yy�Dfi�1=2 �

Dt2

2
�u2C4xx � v2C4yy�Dfj�1=2: �41�
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The L±W scheme is written as

f n�1
ij � f n

ij ÿ Dt�ufx � vfy� �
�uDt�2

2
fxx �
�vDt�2

2
fyy: �42�

When the contravariant velocities u0 and v0 are positive, the scheme takes the form

f n�1
ij � f n

ij ÿ Dt�ÿ2�uC2x � vC2y�Dfiÿ1=2 � �uC3x � vC3y�Dfi�1=2 � �uC2x � vC2y�Dfiÿ1=2�

� Dt2

2
�u2C3xx � v2C3yy�Dfi�1=2 ÿ

Dt2

2
�u2C2xx � v2C2yy�Dfiÿ1;2 ÿ Dt�ÿ2�uC1x � vC1y�Dfjÿ1=2

� �uC4x � vC4y�Dfj�1=2 � �uC1x � vC1y�fjÿ1=2� �
Dt2

2
�u2C4xx � v2C4yy�Dfj�1=2

ÿ Dt2

2
�u2C1xx � v2C1yy�Dfjÿ1=2: �43�

Introducing the ¯ux limiters Fi�1=2, Fi�1=2, Fj�1=2 and Fjÿ1=2 as in Davis' approach, we obtain

f n�1
ij � f n

ij ÿ Dt�ÿ2�uC2x � vC2y�Dfiÿ1=2� ÿ Dt�uC3x � vC3y� ÿ
Dt2

2
�u2C3xx � v2C3yy�

� �
Fi�1=2Dfi�1=2

ÿ Dt�uC2x � vC2y� �
Dt2

2
�u2C2xx � v2C2yy�

� �
Fiÿ1=2Dfiÿ1=2 ÿ Dt�ÿ2�uC1x � vC1y�Dfjÿ1=2�

ÿ Dt�uC4x � vC4y� ÿ
Dt2

2
�u2C4xx � v2C4yy�

� �
Fj�1=2Dfj�1=2

ÿ Dt�uC4x � vC4y� �
Dt2

2
�u2C1xx � v2C1yy�

� �
Fjÿ1=2Dfjÿ1=2: �44�

Rewriting the global scheme in the form

L W� �K�i�1=2Dfi�1=2 ÿ K�iÿ1=2Dfiÿ1=2� � �K�j�1=2Dfj�1=2 ÿ K�jÿ1=2Dfjÿ1=2� �45�

gives the following equalities according to equations (44) and (45):

Dt�uC3x � vC3y� ÿ
Dt2

2
�u2C3xx � v2C3yy�

� �
Fi�1=2 � Dt�uC3x � vC3y� ÿ

Dt2

2
�u2C3xx � v2C3yy�

� �
ÿ K�i�1=2;

Dt�uC2x � vC2y� �
Dt2

2
�u2C2xx � v2C2yy�

� �
Fiÿ1=2 � Dt�uC2x � vC2y� �

Dt2

2
�u2C2xx � v2C2yy�

� �
� K�iÿ1=2:

Then we obtain by identi®cation the expression of the dissipation terms as

K�i�1=2 � Dt�uC3x � vC3y� ÿ
Dt2

2
�u2C3xx � v2C3yy�

� �
�1ÿ Fi�1=2�;

K�i�1=2 � Dt�uC2x � vC2y� �
Dt2

2
�u2C2xx � v2C2yy�

� �
�Fiÿ1=2 ÿ 1�:

�46�
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Likewise, according to y,

K�j�1=2 � Dt�uC4x � vC4y� ÿ
Dt2

2
�u2C4xx � v2C4yy�

� �
�1ÿ Fj�1=2�;

K�j�1=2 � Dt�uC1x � vC1y� �
Dt2

2
�u2C1xx � v2C1yy�

� �
�Fjÿ1=2 ÿ 1�:

�47�

With u0 < 0 the expression of the dissipation terms takes the form

Kÿi�1=2 � Dt�uC3x � vC3y� �
Dt2

2
�u2C3xx � v2C3yy�

� �
�Fi�1=2 ÿ 1�;

Kÿiÿ1=2 � Dt�uC2x � vC2y� ÿ
Dt2

2
�u2C2xx � v2C2yy�

� �
�1ÿ Fiÿ1=2�:

�48�

With v0 < 0 the expression of the dissipation terms takes the form:

Kÿj�1=2 � Dt�uC4x � vC4y� �
Dt2

2
�u2C4xx � v2C4yy�

� �
�Fi�1=2 ÿ 1�;

Kÿjÿ1=2 � Dt�uC1x � vC1y� ÿ
Dt2

2
�u2C1xx � v2C1yy�

� �
�1ÿ Fiÿ1=2�:

�49�
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